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Abstract

We solve numerically the problem of pair production from an external electric ficld
in 1+1 dimensions including the quantum back -reaction from the produced pairs. We
find that in the linear regime our numerical results agree perfectly with analytic calcula-
tions. In the strong ficld regime where tunnelling is uninhibited we determine the time it
takes for the electric field to degrade due to energy transfer to the large number of pion
field degrees of freedom. The problem has three time scales—the oscillation frequency
of the charged quanta, the induced plasma oscillation frequency due to the production
of pairs and finally the time scale for energy to be transferred from the electromagnetic
field to the pion field.

1 Introduction

In a recent paper we presented a tormalism for solving the quantum back reaction problem
in scalar QED(1]. In this talk I would like to discuss preliminary results o our numerical
simulations of the quantum backreaction problem in 1+1 dimensions for various inidal con-
ditions on the electric field and on the charged scalar field [2). The quantities we will focus
on is the time evolution of the electric field and the induced current. We will also discuss the
spectra of the produced particles. For small initial electric field and small times we show that

'Talk presented by Fred Cooper at the Santa Fe Workshop on Intermittency in High-Energy Collisions,
March 18-21, 1990
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the linearized theory gives an adequate description of the time evolution— however no dissi-
pati.... occurs in the linear regime. For large fields (e Ey & m?) there are three time scales to
deal with— the natural frequency of the pion field determined by its mass, an induced plasma
oscillation frequency caused by pair production and screening and finally the time it ;akes for
the electric field to degrade. Because of the multitime nature of the problem it is difficult to
do accurate calculations at long times. For simplicity we will discuss scalar electrodynamics
where the produced particles are charged pions. A similar formalism exists for the QED.
Scalar electrodynainics is defined by the two equations of motion: For the charged scalar
field we have:
— (0a — 1€As) (8% — ieA®) @ + P =0, (1

and for the electromagnetic field:

0aFP2 = C{—ie(* %0 — 05°0*) — 22 AP0 o), (2)

r4

where C denotes charge symmetrization with respect to ®* and ©. We next want the expec-
tation value of these equations for the case when the electromagnetic field can be treated as
a classical external field. We obtain

—(0a — irAL) (D" —ieAM)p+ ulp =0,
OuFP = —ie(¢"0%d — 90P9°) —2€*AP9°9
—{1e/2(8? = 85) + 2 AP}W (2, 2') |3uz, (3)
where
$=<®>and W(z,z') =< &(2)®*(2') + o*(2)®(2) > -2¢(z)d*(z).

These equations have to be supplemented by the equation for W(z,z'):
— (Oa —1€Aa) (0% - 1eAYW(z,2') + p*W(z,2') = 0. (4)

The problem we woul. like to solve is an idealized problem with spatial homoygeneity.
We imagine we have at time zero two infinite parallel plates at + ai.4 - infinity producing a
homogeneous field E(t). At time zero the field is Eq. If we start with an initial configuration
where there is no charge at t=0 then the electric tield can stay homogeneous and j, will be zero
for all times consistent with Maxwell’s equations. The electric field then pops pairs from the
vacuum in such a way to guarantee charge neutrality locally. The produced pairs can then
accelerate and also partially screen the initial field. The mechanism for pair production will
be Schwinger's mechanism (3] if we start off with adiabatic initial conditions as described
below. Once we have chosen initial data to ensure spatial homogeneity and potentials that are

functions of time alone we can then decompose the orginal quantum field operator & (z, ¢)
as follows:

o(z,0) = [1dkl {fulthawe™ + £ (Dbre™] (5)



where in general [dk] = ddk/(2m)% and a; and b;are time-independent destruction and
creation operators for the positive- and negative-charged scalar mesons. The equation of
motion for the @ fieid yields the equation for the complex Fourier modes fi.(t):

(88 + wi(B)]fe(D)

w,f(t)

0 (6)
[k —eA(t)])? +u? (7

If the operators a, and b, obey the usual commutation relations:
(ax,a}) = [ by, b)) = (2m)6%k — k'), (8)

then the f, are constrained to satisfy fi £t — f{ fi = 1. This condition is satisfied automatically
by a WKB-like parametrization of f:

Fi(®) = [2au(t)] texp [—iye()], ©)
ve(t) = Qlt). (10)

This gives us the exact equation for the mode function Q,(t):

QR (1) + £34/(200) - 2(02:/00" = Wl (1. (1)

Spatial homogeneity requires translational invariance,
W(z —z',t,t') = [[dk] V' (k,t,t")e*5=%) This in turn requires that

<apax> = (2m)9%6%k - k')n.(k);
<biby> = (2m36%k - k)n_(k);
<bay> = (2m98Uk + k') F(k). (12)

We can parametrize G(k, t) = W(k, t=t’) as follows:
G(k;t) =~ (k, ) {1+ n (k) + n_(k) + 2F(k)cos{2y,(t)]}. (13)

The second order differential equation for Q can be transformed into a first order complex
differential equation for the quantity I' (k, t) , where

F=Q —ix; dr'/dt = i(I'? - w?), (14)
or the following two first order differential equations:
da/dt = 2Qx ; dy/dt = x* + w* —®. (15)

To complete these equations we need the back reaction equation for the electric field E. Be-
cause of the symmetry of the proble.n and the fact that we have spatial homogeneity the tield
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strengths depend only on the time. To make that consistent with Gzuss’ law we are then
restricted to initial configurations of zero charge density everywhere: ;% = 0. Maxwell’s
equations also imply that the magnetic field strength is constant in time and thus plays no
role in the backreaction equation for the electric field. So for simplicity we set it equal to
zero. A gauge choice that is especially simple for the vector potential is the gauge where
Ao = 0 and A= A(1) so that we satisfy both the Coulomb-gauge and Lorentz gauge conci-
tions. Thus we have

< jo >=e/[dk1[m<k)—n_<k)1=o, (16)

which is automatically satisfied if we choose at t=0, n. (k) = n_(k) = N(k) (i.e. a neutral
plasma at t=0). For the current in the direction of the field we obtain

— dE /dt =< >=e/[dk}(k — eA)G(k, 1), (17)

In three dimensions one would choose E = (0, 0, E(t)) ; A = (0, 0, A(t) ) and divide k into
ak, and a k,. Only the k, component of the current would be non-zero and we would have

—dE/dt =< j, >=c/[dk](k.-eA(t))G’(k,t). (18)

In 1+1 dimension the only difference is that one does not integrate over the transverse
degrees of freedom since they are absent.

These equations which are continuous in k need to be made discrete. It is also useful to
have equations which are dimensionless. We first put the pion field in a box of size L=Na
where a is the lattice spacing. The allowed momenta are now k, = £27n/L ;n=0,], ... N
To raake these equations dimensionless we use the pion mass m to rescale things. Thus we
letmt=T7,p=mp; Q2 = mA; w = m.

The dimensionless A field is just

A=eA/m; E=~dA/dr = (e/m*)E. (19)

These rescaling [3] leave the I' equation unchanged except that now the quantities are
* 7" quantities and are discretized. That is we obtain the 2N+1 equations

dftn/dt = i(F} - &), (20)

where 02 = (nAp — A)? + 1;4p = 2n/mL.
For the case when N(k) = 0 we obtain for the Electric Field back reaction:

N
d?A/dt? = a Y (nap~ A0 -2, (21)

N



where o = 2 /m3 L .
A nonzero N(k) at time zero leads tc an initial plasma oscillation frequency. For example
if we choose at t=0 N (k) = (Z/L)2n6(k) then the above eq. gets modified to:

N
d*AldT = 2aZA/0 +a Y (map - A7 - o', (22)
n=-N

which displays the plasma screening and oscillation due to the neutrai plasma with plasma
oscillation frequency w? = 2aZ/{o. If we start with N(k) = 0 at t=0, then eventually we
again get screening due to the pairs that get popped out of the vacuum. The induced plasma
frequency can be determined numerically from N(k,t) - - the time dependent density operator
wiich can be found from the Bogoliubov transformation (see appendix A). In order to pro-
duce pairs from the vacuum one must have a large enough box so that this is energetically
possible. The energy constraint to produce pairs is that €Ex> 2m; thus we need mL > 2E
as a constraint on L in order that pairs can be generated in a finite sized box . Also one must
wait a certain time 7 oc 1 /£ before the pion pairs can materialize and the electric field can
start degrading. There are two regimes that we will study in this paper. The first regime is
the weak field regime ¢E < m2 . In that regime as long as A(t)~Et < 1/4 a linear analysis
is valid and one can compare our analytic solution to the linear theory. In the weak field
regime, the final value of the electric field is a new constant whose value is sensitive to the
initial ccnfiguration of the pion field. In the second regime one has a high enough energy
density in the field so that one can penetrate the potential barrier for pair production easily.
One can estimate the probability of producing pairs per unit volume and unit time by a simple
WKB argument found in Itzykson and Zuber [4].

One imagines an electron bound by a potential well of order |V;| &~ 2m and submitted
to an additional electric potential eEx (as shown in fig. 1). The ionization probability is
proportional to the WKB barrier penetration factor:

Vo/‘ } 2 "
e.xp[-zfo dz(2m(Vo — |eE|z)}] = exp(—4/3[2m?/eE]). (23)

A direct calculation due to Schwinger [3] from first principles using the effective action
in an arbitrary constant electric field (ignoring the back reaction) gives instead

[ _ ne !
w=[aEz/(21r2)]ES-—-:12) exp(—-nrm?/|eE|). (24)

nal)




This equation tells us that pair production is exponentially suppressed unless ¢E < m?.
So we expect (and we will find) that there is a crossover value of E where the t time it takes
for E to first reach zero (remember there are plasma oscillations) is relatively short.

The physical quantities that we would like to measure are first the time evolution of E(t),
A(t) , and j(t) . We will determine the plasma oscillation frequency and the time scale for
field energy to be essentially transferred into pair production. This last piece of information
is very interesting for high energy collisions where a similar mechanism of pair production
occurs in QCD for pairs being produced from the chromoelectric flux tube between q q pairs
produced during the collision.

Other quantities of physical interest are the spectra of produced particles dN/[dk] and two
particle correlation function d? N/dk dk’-dN/dk dN/dk'. The two particle correlation function
is important in investigating intermittency in multiparticle production processes.

2 Linear Regime

In the small A regime we can linearize the equations in A. For the case n(k) = F(k) =0 we
have:

/'i=<j>=e/[dk](k-—eA)[l/nk(t')—l/w,‘(t)]. (25)
Here

wi=(k-ed)2+m? o k*+m? —2ekA+0(A4%) =0f —2ekA+---  (26)

If we define 8" vial' = & + 6" sothatQ = & + RedI' = & (1 + RedI' /w) theneq. (25) afier
linearization becomes

A= —e/[dk](lc/azz)[Rcér +ekA/a], (27)

To determine the integrand of the right hand side of this equation we solve the linearized
equation for 8T°:

16" = 206 — 2ekA. (28)

Solving this linear equation using an integrating factor and rearranging terms by integrating
by parts we obtain:

.. ¢ . . .
6T + ek A(t) /@ = (8To + ek Ao /@) e*™ + (ek/@) /o dt' A(t') -1, (29)

Thus,

Redr + ekA(t)/@ = (ekAo/D + Reblp)cos2@t — Imérpsin2 &t
e
+ (elc/C;)/o dt' A(t)cos2a@(t —t'). (30)
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Therefore we obtain

E = e/[dk](k/o’)[(ekAo/mRearo)coszm—xmsrosinza,-:
t
—(ek/D) [) dt' E(t')cos2a(t — )], 31)

This can be solved by Laplace transform techniques.
Letting

E(t) = 2mi)~! / "t e L s(s)ds, (32)

€=100

we find that

(ek/w?) (8 +4@?) "' (sResT) — 2Imbro)
s[1+ f(s)] ’

Ce(s) = Eo + /[dlc] (33)

where

8rg(k) = &8To(k) + ekA/@
f(a) = e2(41rm2)"[(1+zz)}z‘3sinh"z—1/22],z=3/(2m). (34)

After distorting the contour and isolating the pole at s= 0 we obtain
Et) = [1+e*/(127m?)])"'[Eo - /[dk]ek(zw’)“'lmél‘(;]

+ w"hn/l”dyea"‘"y"[N.(s= 2miy) /(1 + f.(s = 2miy))

— N_(s =2miy)/(1+ f_(s = 2miy))], (35)
where

Ny(s=2imy) = Eo+(e2/41r)PP/o°°dkk2ar3[k2-m’(yz-1)1-'[imya,-'»,,(k)

+7(k)) £ (e /8m?)(y? — Dy~ (k = myfy? - 1), (36)

and we have written

(k) = ek/(2&%)y(|k)andy = A, + i7;. (37)

2



For simplicity let us choose our initial data so that

Q(t=0)=w(t=0). (38)
Adiabatic initial conditions (which are implicitly assumed by Schwinger) correspond to
Q(t=0) =w(t=0). (39)

To see the difference between adiabatic and non-adiabatic initial conditions we will ex-
plore initial data parametrized by a single parameter . That is we will assume that at t= 0 eq.
(38 ) pertains and also

Q(t=0) = Buw(t=90). (40)

For this simple parametrization we can explicitly determine E(t).

1+ Be?/(127mm?)

E® = Bl (Taam)

]

w cos(2mty)y/y? ~1
+ 3E(1-pe(1zamd)™ [T Tyz »:n;f (‘;)'2 @n

wher=

) 1,
Fo(y) = e2(4mm?)"! [-—y"\/yz ~Tcosh =y + y + imy /47 1] 4

The integral vanishes at large t by the Riemann Lebesque lemma so that the asymptotic
behavior at large t is given by the first term on the ths of eq. (41) . A useful way of writing
this resu't is

E(t) = [Eo/(1+&)]{1+ & F(t) + p&*(1 — F(1))}, (43)
where 82 = e2/12wm? and F(t) is the integral times ( 1 + 82). F(1) is such that F(0, =1 and
F( t=00) = 0.

From the above equation it is clear that for adiabatic initial conditions E remains a constant
as long as one is in the linear regime. When Eqt > 1/4 the linear analysis breaks down. This is
Schwinger’s choice of initial conditions. If we choose 3 smaller than 1 then all that happens
in the linear regime is that E settles down to a new value of E which is the result of a partial
screening of the initial electric field. (Choosing Q(0) # w(0) or (0) # w(0) is equivalent
to choosing a n.on zero initial number density at t=0 relative to an adiabatic vacuum as seen
fruom eq. (52) of the appendix].

Infig. (2a, b ) we compare the resul: of the linear analysis eq. (43) for eE/m? =.01 and 8
=1, -1 with a numerical simulation using eqs. (20) and (21). In the numerical simulation we
have used m=1, mL=300, e /m?=.01, and N=1000. We see that the numerical simulation
gives excellent agreement with the analytic result.
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3 Tunnelling regime

When the electric field E is R 1 then it is quite easy for pairs to be produced and in that
regime the final result is independent of the initial data. We can see the approach to-the tun-
neling regime by comparing the results for £(t) for .5 < Eo < 5 with 8=0. This is shown
in fig. (3). Once the pairs are produced one sees that there are plasma oscillations which
become damped as the electric field degrades. The quantities we measure are A(t), E(t), <
j(©) > and Q,(t). We are really interested in the long time behavior of these quantities. Our
data gets increasingly worse as we go from A(t) to E(t) to <j(t) > . We see from fig. (4)
that the first thing that happens is that A(t) is trying to settle down at a new constant value
which is not zero. Then E(t) is settling down to small oscillations about zero. To be in the
“out” regime of a particle physics experiment, the generalized frequencies Q(t) must become
time independent (true out regime) or at least slowly varying so we are at least in an adiabatic
approximate "out” regime. From our data on Q(k=0, t) for Eo=2, fig. (5), we see we are still
far from even an adiabatic out vacuum. Thus although we have convir.ing numerical data
showing the decay of the initial electromagnetic field by transferring energy into the various
pion degrees of freedom, we are not yet in a regime where we can discuss questions about
particle production and multiparticle correlation functions. This will require much longer
computer runs at extremely high accuracy so that the output remains free of noise. This work
is now in progress. We are also hoping that the analytic behavior of the long time behavior
cf E(t) can be obtained by some further analysis.

APPENDIX A Particle Production and the Bogoliubov Transformation

At large times we expect the electric field to degrade to zero and for A(t) — A.,. Thus
at large times we expect that the ¢(x,t) can be represented in terms of a free field expansion:

(z,1) = [[dk][afteibs—and 4 s emithemumst], (44)

Since we also have the expansion:

o(z,1) = / (k)L fi(t) axe™ + f24(2)bLe= ], (45)

one can relate af* to ax and vice -versa. The transformation is called the Bogoliubov trans-
formation. We define

bu(z,t) = fi(t)e™™; Pulz,t) = f2 k(t)e™, (46)

9



where for the out states yi** = wit One has using the usual scaiar product,

< u,v >= ifdz{u‘aov - vdou'}, (47)
that
< ¢u(z,1), Pz, 1) >=0; < ¢i(x,1), du(z,t) >= (27) %%k — k). (48)

The Bogoliubov coefficients are defined by

(z,t) = /[dk'l{a(k,k',t)daz“‘(x,t) + Bk, k' )" (z,1)}. (49)

Using the orthogonality relations we obtain

a(k,k',t) = < ¢u(z,1),00%(x,t) >=(2m) %%k — K)a(k,t),
a(k,t) = (dwpy) 2l n0-ad(q + ) + %i(nk/Qk — wie/we)],
Blk, K1) = —< du(z,t),93"(z,t) >= (2m)%6%k + k') B(k, 1),

: 1. .
Blk,t) = (4uwp)™'/2e OO0y —we) — Si(Qu/Q = dnfwi)]. (50)
The Number of particles produced per unit volume is just
V1dN/dk =<t = O[b3™ b2™* + o™ a™ |t =0 > . (51)
When N(k) = F(k) = 0 we obtain:

V1dN/dk = limg_oo(4wi) " [(Q — wi)? + j}(ﬂk/ﬁk — wefwe)?], (52)

where we evaluate this at large t when Q and w are becoming time independent.
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